RNA nedir?

RNA nedir?

RNA ribonükleik asit anlamına gelir. Uzun nükleotid zincirleri ile önemli bir moleküldür. Bir nükleotit azotlu bir baz, bir riboz şeker ve bir fosfat içerir. Tıpkı DNA gibi, canlılar için RNA hayati önem taşır.

RNA’ya Kıyasla DNA

DNA, bilinen tüm canlı organizmaların gelişimi ve işleyişinde kullanılan genetik talimatları içeren bir nükleik asit olarak tanımlanır. RNA molekülleri protein sentezinde ve bazen genetik bilginin iletilmesinde rol oynarlar. 

Bununla birlikte, DNA’nın aksine, RNA çeşitli şekil ve tiplerde gelir. DNA bir çift sarmal ve bükülmüş bir merdiveni gibi görünse de, RNA birden fazla türde olabilir. DNA genellikle çift iplikli iken, RNA genellikle tek sarmallıdır. Ek olarak, DNA deoksiriboz içerdiğinde RNA riboz içerir. Deoksiribozun bir oksijen atomu yoktur. RNA bazları Adenine (A), Urasil (U) (DNA’da timin yerine), Sitosin (C) ve Guanin (G) ‘ye sahiptir. 

DNA’daki deoksiriboz şekeri, CH bağları nedeniyle daha az reaktiftir. DNA alkali şartlarda stabildir. DNA’nın, zarar veren enzimin yapışabileceği küçük kanallar vardır ve bu da enzimin DNA’ya saldırmasını zorlaştırır.

Ancak riboz şekeri, C-OH (hidroksil) bağları nedeniyle daha reaktiftir. RNA alkali şartlarda stabil değildir. RNA, enzimler tarafından saldırıya uğramayı kolaylaştıran daha büyük oluklara sahiptir.

Ribo Nükleik asit veya RNA bir nükleik asittir, nükleotitlerden oluşan bir polimerdir. Her nükleotit bir azotlu baz, bir riboz şeker ve bir fosfattan oluşur. RNA pek çok önemli biyolojik rol oynar, bunların arasında DNA'da taşınan genetik bilginin proteine çevirisi (translasyon) ile ilişkili çeşitli süreçlerde de yer alır. RNA tiplerinden olan mesajcı RNA, DNA'daki bilgiyi protein sentez yeri olan ribozomlara taşır, ribozomal RNA ribozomun en önemli kısımlarını oluşturur, taşıyıcı RNA ise protein sentezinde kullanılmak üzere kullanılacak aminoasitlerin taşınmasında gereklidir. Ayrıca çeşitli RNA tipleri genlerin ne derece aktif olduğunu düzenlemeye yarar.

RNA, DNA'ya çok benzer olmakla beraber bazı yapısal ayrıntılarında farklılık gösterir. Hücre içinde RNA genelde tek zincirli, DNA ise genelde çift zincirlidir. RNAnükleotitleri riboz içerirler, DNA ise deoksiriboz (bir oksijeni atomu eksik olan bir riboz türü) vardır. DNA'da bulunan timin bazı yerine RNA'da urasil vardır ve genelde RNA'daki bazlar ayrıca kimyasal modifikasyona uğrar. RNA, RNA polimeraz enziminin DNA'yı okuması (transkripsiyonu) ile sentezlenir ve ardından başka enzimler tarafından işlenerek değişime uğrar. Bu RNA işleyici enzimlerin bazıları kendi RNA'larını içerirler.

RNA'daki her nükleotit bir riboz şekeri içerir, bunun karbonları 1' ila 5' olarak numaralandırılır. 1' konumuna bir baz bağlıdır, genelde adenin (A), sitozin (C), guanin (G) veya urasil (U). İki riboz arasında bir fosfat grubu vardır, bu fosfat bir ribozun 3' konumuna, öbür ribozun ise 5' konumuna bağlıdır. Fizyolojik pH'de fosfat grubu negatif bir yük taşıdığı için RNA yüklü bir moleküldür (polianyon). Bazı bazlar arasında hidrojen bağları oluşabilir: sitozin ve guanin, adenin ve urasil ve bazen guanin ve urasil arasında bu tür bağlar oluşur. Ancak, RNA zinciri çeşitli şekiller alabildiği için bunlardan başka baz-baz etkileşimleri de mümkündür, örneğin bir grup adenin birbiriyle bağlanarak RNA zincirinde bir tümsek oluşturabilir, veya GNRA dörtlüsü'nde bir guanin-adenin etkileşimi olur.

RNA'yı DNA'dan farklı kılan önemli bir fark, riboz şekerin 2' konumundaki hidroksil grubudur. Bu fonksiyonel grubun varlığı c3'-endo şeker konformasyonunu zorunlu kılar, buna karşın DNA'nın deoksiriboz şekerinin C2'-endo konformasyonu vardır. Bunun sonucu olarak RNA'nin çifte sarmallı kısımları A-şekilli olur, DNA'da yaygın olarak görülen B şekilli sarmaldan farklı olarak. A-şekilli sarmalın büyük oyuğu B şekilli sarmala kıyasla daha derin ve dardır, küçük oyuğu ise sığ ve geniştir. 2' hidroksil grubunun ikinci bir etkisi ise, RNA'nın esnek olan bölgelerinde (yani çift sarmal oluşturmamış kısımlarında) bu hidroksil grubunun yanındaki fosfodiester bağa saldırıp şeker-fosfat zincirin kesilmesine neden olabilmesidir.

RNA transkripsiyonu sırasında sadece dört baz kullanılır (adenin, sitozin, guanin ve urasil) ama ergin RNA'larda pek çok değişime uğramış şeker ve baz vardır. Psödouridin (Ψ) adlı nükleozitte urasil ile riboz arasındaki bağ, bir C-N bağından C-C bağına değişmiştir. Psödouridin ve ribotimidin (T) beraberce çeşitli RNA'larda görülür, özellikle tRNA'ların TΨC ilmiğinde. Değişime uğramış bazlardan bir diğeri olan hipoksantin, deamine olmuş bir guanin bazıdır, nükleozit hali inosin olarak adlandırılır. Genetik kodun değişkenliğinin açıklanmasında inosin anahtar bir rol oynar. Değişime uğramış 100'e aykın nükleozit bilinmektedir, bunların arasında psödouridin ve 2'-O-metilribozlu nükleozitler en yaygın olanlarıdır. Bu modifikasyonların çoğunun işlevi bilinmemektedir. Ancak ribozomal RNA'da çoğu transkripsiyon sonrası modifikasyon, ribozomun en işlevsel bölgelerinde, örneğin peptidil transferaz merkezinde ve altbirim arayüzlerinde yer alması kayda değerdir, bu nedenle bu modifikasyonların normal fonksiyon için gerekli olduğu anlaşılmaktadır.

Tek iplikli bir RNA'nın işlevsel şekli, tıpkı proteinlerde olduğu gibi, çoğu zaman belli bir üçüncül yapı gerektirir. Bu yapının iskeleti, molekülün içindeki bazlar arasındaki hidrojen bağlarıyla ortaya çıkar. Bu şekilde firkete yapısı, tümsek ve ilmik gibi belli ikincil yapı elemanlarından oluşan bölgeler ortaya çıkar. Bir RNA dizisinin nasıl bir üç boyutlu şekil alacağının tahmini halen aktif bir araştırma konusudur. 

RNA'nın keşfi

Nükleik asitler 1868'de Friedrich Miescher tarafından keşfedilmiş, hücre çekirdeğinde (nucleusta) yer aldığı için Miescher bu maddeye 'nüklein' adını vermişti. Daha sonradan nükleik asitlerin çekirdeksiz olan prokaryotlarda da olduğu bulunmuştu. RNA'nın protein sentezinde rol oynadığı 1939'ten itibaren, Torbjörn Caspersson, Jean Brachet ve Jack Schultz'un deney sonuçlarından dolayı, tahmin edilmekteydi. Gerard Marbaix ilk mesajcı RNA'yı (tavşan hemoglobinine ait olan) saflaştırmış, ve onu yumurta hücrelerine enjekte edince bunun hemoglobin sentezini sağladığını göstermişti. Severo Ochoa RNA'nın nasıl sentezlendiğini keşfettikten sonra 1950 Nobel Tıp Ödülünü kazandı. Robert W. Holley bir maya RNA'sının ilk 77 nükleotidinin dizisini 1965'te çözmüş, bundan dolayı 1968 Nobel Tıp ödülünü kazanmıştır. Carl Woese ve diğerleri 1967'de RNA'nın katalitik olduğunu buldular en eski canlı tiplerinin bir "RNA Dünyası" içinde yaşadıklarını, RNA'yı hem genetik bilgi taşımak hem de biyokimyasal tepkimeleri katalizlemek için kullanmış olabileceğini öne sürdüler. 1976'da Walter Fiers ve arkadaşları ilk defa bir RNA virüs genomunun (bakteriyofaj MS2'nin) tüm nükleotit dizisini belirlediler.

1990 başlarında bitki hücrelerinin içine sokulan genlerin bunlara benzer endojen genleri susturduğu bulundu. Yaklaşık aynı dönemde, 22 nt uzunlukta (günümüzde mikroRNA olarak adlandırılan) RNA'ların C. elegans solucanının gelişimine etki ettiği keşfedildi.

Gen düzenleyici RNA'ların keşfi üzerine, onkogenleri ve viral genleri susturabilecek RNA'dan oluşmuş ilaçlar geliştirmeye yönelik çabalar başladı. 2006 itibarıyla piyasada bu özellikli tek bir ilaç bulunmaktadır, bir sitomegalovirüs genini inhibe etmeye yarayan Vitravene (bir ters anlamlı RNA), ama RNA enterferans yoluyla genleri aşağı ayarlamak için siRNA kullanmaya yönelik ümit verici araştırmalar sürmektedir.

Bu bilgiye katkıda bulun (Üyelik gerektirmez)

Resime tıklayarak resmi yenileyebilirsiniz